Filters
Question type

Study Flashcards

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1, there is sufficient evidence that age has an effect on the number of weeks a worker is unemployed due to a layoff while holding constant the effect of all the other independent variables at a 10% level of significance.  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 Model 1, there is sufficient evidence that age has an effect on the number of weeks a worker is unemployed due to a layoff while holding constant the effect of all the other independent variables at a 10% level of significance.

A) True
B) False

Correct Answer

verifed

verified

SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, there is enough evidence to conclude that MPG makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance. SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, there is enough evidence to conclude that MPG makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance. -Referring to Scenario 17-9, there is enough evidence to conclude that MPG makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance.

A) True
B) False

Correct Answer

verifed

verified

Suppose the probability of a power outage at a nuclear power plant on a single day is the same every day of the year. Also the probability of having a power outage on a single day does not Increase or decrease the probability of a power outage on another day. Which of the following Distributions would you use to determine the probability that a power outage will occur next Monday?


A) Binomial distribution.
B) Poisson distribution.
C) Normal distribution.
D) Hypergeometric distribution.

E) B) and C)
F) B) and D)

Correct Answer

verifed

verified

Some business analytics involve starting with many variables, followed by filtering the data by exploring specific combinations of categorical values or numerical range. In Excel, this approach is mimicked by using a drill-down.

A) True
B) False

Correct Answer

verifed

verified

The probability that a particular brand of smoke alarm will function properly and sound an alarm in the presence of smoke is 0.8. You have 5 such alarms in your home and they operate Independently. Which of the following distributions would you use to determine the probability That all of them will function properly in case of a fire?


A) Binomial distribution.
B) Poisson distribution.
C) Normal distribution.
D) Hypergeometric distribution.

E) A) and B)
F) C) and D)

Correct Answer

verifed

verified

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1, what is the p-value of the test statistic to determine whether there is a significant relationship between the number of weeks a worker is unemployed due to a layoff and the entire set of explanatory variables?  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 Model 1, what is the p-value of the test statistic to determine whether there is a significant relationship between the number of weeks a worker is unemployed due to a layoff and the entire set of explanatory variables?

Correct Answer

verifed

verified

SCENARIO 17-12 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 15 did not have a lawn service (code 0) and 15 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars), lawn size (Lawn Size, in thousands of square feet), attitude toward outdoor recreational activities (Atitude 0 = unfavorable, 1 = favorable), number of teenagers in the household (Teenager), and age of the head of the household (Age). The Minitab output is given below:  SCENARIO 17-12 The marketing manager for a nationally franchised lawn service company would like to study the characteristics that differentiate home owners who do and do not have a lawn service. A random sample of 30 home owners located in a suburban area near a large city was selected; 15 did not have a lawn service (code 0) and 15 had a lawn service (code 1). Additional information available concerning these 30 home owners includes family income (Income, in thousands of dollars), lawn size (Lawn Size, in thousands of square feet), attitude toward outdoor recreational activities (Atitude 0 = unfavorable, 1 = favorable), number of teenagers in the household (Teenager), and age of the head of the household (Age). The Minitab output is given below:   -Referring to Scenario 17-12, which of the following is the correct expression for the estimated model? a)  Y = - 70.49 + 0.2868  Income  + 1.0647  LawnSize  - 12.744  Atitude  - 0.200  Teenager  + 1.0792  Age b)  \begin{aligned} \hat { Y } = & - 70.49 + 0.2868 \text { Income } + 1.0647 \text { LawnSize } - 12.744 \text { Atitude } \\ & - 0.200 \text { Teenager } + 1.0792 \text { Age } \end{aligned}  c)  \ln (  odds ratio  ) = - 70.49 + 0.2868  Income  + 1.0647  LawnSize  - 12.744  Atitude  - 0.200  Teenager  + 1.0792  Age d)  \ln (  estimated odds ratio)  = - 70.49 + 0.2868  Income  + 1.0647  LawnSize  - 12.744  Atitude  - 0.200  Teenager  + 1.0792  Age -Referring to Scenario 17-12, which of the following is the correct expression for the estimated model? a) Y=70.49+0.2868Y = - 70.49 + 0.2868 Income +1.0647+ 1.0647 LawnSize 12.744- 12.744 Atitude 0.200- 0.200 Teenager +1.0792+ 1.0792 Age b) Y^=70.49+0.2868 Income +1.0647 LawnSize 12.744 Atitude 0.200 Teenager +1.0792 Age \begin{aligned} \hat { Y } = & - 70.49 + 0.2868 \text { Income } + 1.0647 \text { LawnSize } - 12.744 \text { Atitude } \\ & - 0.200 \text { Teenager } + 1.0792 \text { Age } \end{aligned} c) ln(\ln ( odds ratio )=70.49+0.2868) = - 70.49 + 0.2868 Income +1.0647+ 1.0647 LawnSize 12.744- 12.744 Atitude 0.200- 0.200 Teenager +1.0792+ 1.0792 Age d) ln(\ln ( estimated odds ratio) =70.49+0.2868= - 70.49 + 0.2868 Income +1.0647+ 1.0647 LawnSize 12.744- 12.744 Atitude 0.200- 0.200 Teenager +1.0792+ 1.0792 Age

Correct Answer

verifed

verified

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 and using both Model 1 and Model 2, what are the null and alternative hypotheses for testing whether the independent variables that are not significant individually are also not significant as a group in explaining the variation in the dependent variable at a 5% level of significance?  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 and using both Model 1 and Model 2, what are the null and alternative hypotheses for testing whether the independent variables that are not significant individually are also not significant as a group in explaining the variation in the dependent variable at a 5% level of significance?

Correct Answer

verifed

verified

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1, we can conclude that, holding constant the effect of the other independent variables, the number of years of education received has no impact on the mean number of weeks a worker is unemployed due to a layoff at a 1% level of significance if all we have is the information of the 95% confidence interval estimate for?2 .  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 Model 1, we can conclude that, holding constant the effect of the other independent variables, the number of years of education received has no impact on the mean number of weeks a worker is unemployed due to a layoff at a 1% level of significance if all we have is the information of the 95% confidence interval estimate for?2 .

A) True
B) False

Correct Answer

verifed

verified

A powerful women's group has claimed that men and women differ in attitudes about sexual discrimination. A group of 50 men (group 1) and 40 women (group 2) were asked if they thought Sexual discrimination is a problem in the United States. Of those sampled, 11 of the men and 19 Of the women did believe that sexual discrimination is a problem. Which of the following tests Will you use to find out if there is any difference in attitudes about sexual discrimination?


A) Pooled-variance t test.
B) Paired t test.
C) Z test for difference in proportions.
D) Wilcoxon rank sum test.

E) B) and D)
F) C) and D)

Correct Answer

verifed

verified

SCENARIO 17-8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with Y=%Y = \% Passing as the dependent variable, X1=%X _ { 1 } = \% Attendance, X2=X _ { 2 } = Salaries and X3=X _ { 3 } = Spending:  Regression Statistics  Multiple R 0.7930 R Square 0.6288 Adjusted R 0.6029 Square  Standard 10.4570 Error  Observations 47\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7930 \\\text { R Square } & 0.6288 \\\text { Adjusted R } & 0.6029 \\\text { Square } & \\\text { Standard } & 10.4570 \\\text { Error } & \\\text { Observations } & 47 \\\hline\end{array} ANOVA  SCENARIO 17-8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily mean of the percentage of students attending class (% Attendance), mean teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Following is the multiple regression output with  Y = \%  Passing as the dependent variable,  X _ { 1 } = \%  Attendance,  X _ { 2 } =  Salaries and  X _ { 3 } =  Spending:   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7930 \\ \text { R Square } & 0.6288 \\ \text { Adjusted R } & 0.6029 \\ \text { Square } & \\ \text { Standard } & 10.4570 \\ \text { Error } & \\ \text { Observations } & 47 \\ \hline \end{array}    ANOVA     \begin{array}{lrrrrrr} \hline & \text { Coefficients } & \begin{array}{c} \text { Standard } \\ \text { Error } \end{array} & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\ \text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\ \text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}  -Referring to Scenario 17-8, the alternative hypothesis  H _ { 1 } \text { : At least one of } \beta _ { j } \neq 0 \text { for } j = 1,2 \text {. }  , 3 implies that percentage of students passing the proficiency test is related to at least one of the explanatory variables.  Coefficients  Standard  Error  t Stat  P-value  Lower 95%  Upper 95%  Intercept 753.4225101.11497.45110.0000957.3401549.5050 % Attendance 8.50141.07717.89290.00006.329210.6735 Salary 0.0000006850.00060.00110.99910.00130.0013 Spending 0.00600.00461.28790.20470.00340.0153\begin{array}{lrrrrrr}\hline & \text { Coefficients } & \begin{array}{c}\text { Standard } \\\text { Error }\end{array} & \text { t Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -753.4225 & 101.1149 & -7.4511 & 0.0000 & -957.3401 & -549.5050 \\\text { \% Attendance } & 8.5014 & 1.0771 & 7.8929 & 0.0000 & 6.3292 & 10.6735 \\\text { Salary } & 0.000000685 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\\text { Spending } & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array} -Referring to Scenario 17-8, the alternative hypothesis H1 : At least one of βj0 for j=1,2H _ { 1 } \text { : At least one of } \beta _ { j } \neq 0 \text { for } j = 1,2 \text {. } , 3 implies that percentage of students passing the proficiency test is related to at least one of the explanatory variables.

A) True
B) False

Correct Answer

verifed

verified

SCENARIO 17-1 A real estate builder wishes to determine how house size (House) is influenced by family income (Income) , family size (Size) , and education of the head of household (School) . House size is measured in hundreds of square feet, income is measured in thousands of dollars, and education is in years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel output is provided below: SUMMARY OUTPUT Regression Statistics  Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array} ANOVA df SS  MS F Signif F Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}  Coeff  StdError t Stat P-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c l c c } & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array} -Referring to Scenario 17-1, what fraction of the variability in house size is explained by income, size of family, and education?


A) 27.0%
B) 33.4%
C) 74.8%
D) 86.5%

E) C) and D)
F) A) and D)

Correct Answer

verifed

verified

SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, what is the p-value of the test statistic to determine whether Cargo Vol makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance? SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, what is the p-value of the test statistic to determine whether Cargo Vol makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance? -Referring to Scenario 17-9, what is the p-value of the test statistic to determine whether Cargo Vol makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

Correct Answer

verifed

verified

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 and using both Model 1 and Model 2, there is insufficient evidence to conclude that the independent variables that are not significant individually are significant as a group in explaining the variation in the dependent variable at a 5% level of significance?  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 and using both Model 1 and Model 2, there is insufficient evidence to conclude that the independent variables that are not significant individually are significant as a group in explaining the variation in the dependent variable at a 5% level of significance?

A) True
B) False

Correct Answer

verifed

verified

SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below. SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, what is the value of the test statistic to determine whether HP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance? SCENARIO 17-9 What are the factors that determine the acceleration time (in sec.) from 0 to 60 miles per hour of a car? Data on the following variables for 171 different vehicle models were collected: Accel Time: Acceleration time in sec. Cargo Vol: Cargo volume in cu. ft. HP: Horsepower MPG: Miles per gallon SUV: 1 if the vehicle model is an SUV with Coupe as the base when SUV and Sedan are both 0 Sedan: 1 if the vehicle model is a sedan with Coupe as the base when SUV and Sedan are both 0 The regression results using acceleration time as the dependent variable and the remaining variables as the independent variables are presented below.     -Referring to Scenario 17-9, what is the value of the test statistic to determine whether HP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance? -Referring to Scenario 17-9, what is the value of the test statistic to determine whether HP makes a significant contribution to the regression model in the presence of the other independent variables at a 5% level of significance?

Correct Answer

verifed

verified

SCENARIO 17-5 You worked as an intern at We Always Win Car Insurance Company last summer. You notice that individual car insurance premiums depend very much on the age of the individual, the number of traffic tickets received by the individual, and the population density of the city in which the individual lives. You performed a regression analysis in EXCEL and obtained the following information:  Regression Statistics  Multiple R 0.63 R Square 0.40 Adjusted R Square 0.23 Standard Error 50.00 Observations 15.00 ANOVA df SS  MS  F  Significance F Regression 35994.242.400.12 Residual 1127496.82 Total 45479.54 Coefficients  Standard  Error  t Stat  P-value  Lower 99.0%  Upper 99.0%  Intercept 123.8048.712.540.0327.47275.07 AGE 0.820.870.950.363.511.87 TICKETS 21.2510.661.990.0711.8654.37 DENSITY 3.146.460.490.6423.1916.91\begin{array}{l}\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.63 \\\text { R Square } & 0.40 \\\text { Adjusted R Square } & 0.23 \\\text { Standard Error } & 50.00 \\\text { Observations } & 15.00 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array}{lrcccr}\hline & d f &{\text { SS }} & \text { MS } & \text { F }&{\text { Significance } F} \\\hline \text { Regression } & 3 & & 5994.24 & 2.40 & 0.12 \\\text { Residual } & 11 & 27496.82 & & & \\\text { Total } & & 45479.54 & & & \\\hline\end{array}\\\\\begin{array}{lrrrrrr}\hline & \text { Coefficients } & \begin{array}{c}\text { Standard } \\\text { Error }\end{array} & \text { t Stat } & \text { P-value } & \text { Lower 99.0\% } & \text { Upper 99.0\% } \\\hline \text { Intercept } & 123.80 & 48.71 & 2.54 & 0.03 & -27.47 & 275.07 \\\text { AGE } & -0.82 & 0.87 & -0.95 & 0.36 & -3.51 & 1.87 \\\text { TICKETS } & 21.25 & 10.66 & 1.99 & 0.07 & -11.86 & 54.37 \\\text { DENSITY } & -3.14 & 6.46 & -0.49 & 0.64 & -23.19 & 16.91 \\\hline\end{array}\end{array} AGE -0.82 0.87 -0.95 0.36 -3.51 1.87 TICKETS 21.25 10.66 1.99 0.07 -11.86 54.37 DENSITY -3.14 6.46 -0.49 0.64 -23.19 16.91 -Referring to Scenario 17-5, the regression sum of squares that is missing in the ANOVA table should be ______.

Correct Answer

verifed

verified

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 and using both Model 1 and Model 2, what is the p-value of the test statistic for testing whether the independent variables that are not significant individually are also not significant as a group in explaining the variation in the dependent variable at a 5% level of significance?  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 and using both Model 1 and Model 2, what is the p-value of the test statistic for testing whether the independent variables that are not significant individually are also not significant as a group in explaining the variation in the dependent variable at a 5% level of significance?

Correct Answer

verifed

verified

0.2518 or ...

View Answer

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .  Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}  ANOVA \text { ANOVA }  SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1, ________ of the variation in the number of weeks a worker is unemployed due to a layoff can be explained by the six independent variables after taking into consideration the number of independent variables and the number of observations.  Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array} -Referring to Scenario 17-10 Model 1, ________ of the variation in the number of weeks a worker is unemployed due to a layoff can be explained by the six independent variables after taking into consideration the number of independent variables and the number of observations.

Correct Answer

verifed

verified

SCENARIO 17-6 A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in pounds). Two variables thought to affect weight-loss are client's length of time on the weight loss program and time of session. These variables are described below: Y= Weight-loss (in pounds) X1= Length of time in weight-loss program (in months) X2=1 if morning session, 0 if not X3=1 if afternoon session, 0 if not  (Base level = evening session) \begin{aligned} Y & = \text { Weight-loss (in pounds) } \\ X _ { 1 } & = \text { Length of time in weight-loss program (in months) } \\ X _ { 2 } & = 1 \text { if morning session, } 0 \text { if not } \\ X _ { 3 } & = 1 \text { if afternoon session, } 0 \text { if not } \quad \text { (Base level = evening session) } \end{aligned} Data for 12 clients on a weight-loss program at the clinic were collected and used to fit the interaction model: Y=β0+β1X1+β2X2+β3X3+β4X1X2+β5X1X3+ε\quad Y = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 3 } + \beta _ { 4 } X _ { 1 } X _ { 2 } + \beta _ { 5 } X _ { 1 } X _ { 3 } + \varepsilon Partial output from Microsoft Excel follows:  Regression Statistics  Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array}{ll}{\text { Regression Statistics }} \\\text { Multiple R } & 0.73514 \\\text { R Square } & 0.540438 \\\text { Adjusted R Square } & 0.157469 \\\text { Standard Error } & 12.4147 \\\text { Observations } & 12\end{array}  ANOVA \text { ANOVA } F=5.41118 Significance F=0.040201F=5.41118 \quad \text { Significance } F=0.040201  Coeff  StdError t Stat P-value  Intercept 0.08974414.1270.00600.9951 Length (X1)6.225382.434732.549560.0479 Morn Ses (X2)2.21727222.14160.1001410.9235 Aft Ses (X3)11.82333.15453.5589010.0165 Length*Morn Ses 0.770583.5620.2163340.8359 Length"Aft Ses 0.541473.359880.1611580.8773\begin{array}{ccccc} & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\\text { Intercept } & 0.089744 & 14.127 & 0.0060 & 0.9951 \\\text { Length }\left(X_{1}\right) & 6.22538 & 2.43473 & 2.54956 & 0.0479 \\\text { Morn Ses }\left(X_{2}\right) & 2.217272 & 22.1416 & 0.100141 & 0.9235 \\\text { Aft Ses }\left(X_{3}\right) & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\\text { Length*Morn Ses } & 0.77058 & 3.562 & 0.216334 & 0.8359 \\\text { Length"Aft Ses } & -0.54147 & 3.35988 & -0.161158 & 0.8773\end{array} -Referring to Scenario 17-6, which of the following statements is supported by the analysis shown? a) There is sufficient evidence (at α=0.05\alpha = 0.05 ) of curvature in the relationship between weight-loss (Y)( Y ) and months in program (X1)\left( X _ { 1 } \right) . b) There is sufficient evidence (at α=0.05\alpha = 0.05 ) to indicate that the relationship between weight-loss (Y)( Y ) and months in program (X1)\left( X _ { 1 } \right) depends on session time. c) There is sufficient evidence (at α=0.10\alpha = 0.10 ) to indicate that the session time (morning, afternoon, evening) affects weight-loss (Y)( Y ) . d) There is insufficient evidence (at α=0.10\alpha = 0.10 ) to indicate that the relationship between weight-loss (Y)( Y ) and months in program (X1)\left( X _ { 1 } \right) depends on session time.

Correct Answer

verifed

verified

SCENARIO 17-15 The tree diagram below shows the results of the classification tree model that has been constructed to predict the probability of a cable company's customers who will switch ("Yes" or "No") into its bundled program offering based on the price ($30, $40, $50, $60) and whether the customer spends more than 5 hours a day watching TV ("Yes" or "No") using the data set of 100 customers collected from a survey. SCENARIO 17-15 The tree diagram below shows the results of the classification tree model that has been constructed to predict the probability of a cable company's customers who will switch ( Yes  or  No ) into its bundled program offering based on the price ($30, $40, $50, $60) and whether the customer spends more than 5 hours a day watching TV ( Yes  or  No ) using the data set of 100 customers collected from a survey.     -Referring to Scenario 17-15, the first split occurs at what price? SCENARIO 17-15 The tree diagram below shows the results of the classification tree model that has been constructed to predict the probability of a cable company's customers who will switch ( Yes  or  No ) into its bundled program offering based on the price ($30, $40, $50, $60) and whether the customer spends more than 5 hours a day watching TV ( Yes  or  No ) using the data set of 100 customers collected from a survey.     -Referring to Scenario 17-15, the first split occurs at what price? -Referring to Scenario 17-15, the first split occurs at what price?

Correct Answer

verifed

verified

Showing 21 - 40 of 386

Related Exams

Show Answer